2-2
0

Parrondo's Paradox 4

Nicholas Wheeler
6 October 2013

- Introduction

In Parts $1 \& 3$ of this series of notebooks I took advantage of the finitistic means afforded when Parrondo's Game is modeled as a random walk on a cyclic graph of order 3 . There long-term winning/losing was signaled by the sign of the probability current, once the relevant Markov process has achieved its asymptotic steady state.

In Part 2 -as here -I adhere more closely to the game as Parrondo intended it to be played, as a coin-flip-generated walk on the lattice \mathbb{Z} of positive/negative integers. To establish my methods I look first to Parrondo's A-game.

- The A game

The walker (gambler), starting at the origin, advances (wins) with probability x , retreats (loses) with probability $\mathrm{X}=1-$ x. After n flips of the loaded coin he stands on one or another of the $n+1$ lattice points

$$
\{-n,-n+2, \ldots, n-2, n\}
$$

- all of which are even/odd according as n is even/odd (\Rightarrow breaking even is possible iff n is even).

To compute the expected expected results of a 6-flip game we introduce the
$2 n+1 / . n \rightarrow 6$
13
13-dimensional Markov matrix
$\mathbb{A}=\left(\begin{array}{ccccccccccccc}0 & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ X & 0 & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & X & 0 & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & X & 0 & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & X & 0 & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & X & 0 & x & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & X & 0 & x & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & X & 0 & x & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & X & 0 & x & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & X & 0 & x & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & X & 0 & x & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & X & 0 & x \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & X & 0\end{array}\right) ;$
To record our assumption that the walker (gambler) stands initially at the origin (no money on the table) we write
$P_{0}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right) ;$
After a single flip we have
$\mathrm{P}_{1}=\mathbb{A} \cdot \mathrm{P}_{0}$;
$\mathrm{P}_{1} / /$ MatrixForm
$\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ x \\ 0 \\ X \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$
of which the following figure provides diagramatic representation:

After a second flip we have

```
P
P
\(\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ x^{2} \\ 0 \\ 2 x x \\ 0 \\ x^{2} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)\)
```


The state vector P_{2} is stochastic
Total[Transpose[$\left.\left.P_{2}\right] \llbracket 1 \rrbracket / . X \rightarrow 1-x\right] / / S i m p l i f y$
1
The expected winnings after the 2 nd flip are
(2) $x^{2}+(0) 2 x X+(-2) x^{2} / \cdot x \rightarrow 1-x / /$ Simplify
$-2+4 x$
and are positive/negative according as $x \gtrless \frac{1}{2}$:
$\operatorname{Plot}[-2+4 x,\{x, 0,1\}]$

Successive flips produce
Table[MatrixForm[MatrixPower[$\left.\left.\mathbb{A}, \mathrm{n}] . \mathrm{P}_{0}\right],\{\mathrm{n}, 0,6\}\right]$
$\left.\left\{\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ x \\ 0 \\ x \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ 0 \\ x^{2} \\ 0 \\ 2 x x \\ 0 \\ x^{2} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ 0 \\ x^{3} \\ 0 \\ 3 x^{2} x \\ 0 \\ 3 x x^{2} \\ 0 \\ x^{3} \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ x^{4} \\ 0 \\ 4 x^{3} x \\ 0 \\ 6 x^{2} x^{2} \\ 0 \\ 4 x x^{3} \\ 0 \\ x^{4} \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ x^{5} \\ 0 \\ 5 x^{4} x \\ 0 \\ 10 x^{3} x^{2} \\ 0 \\ 10 x^{2} x^{3} \\ 0 \\ 5 x x^{4} \\ 0 \\ x^{5} \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}x^{6} \\ 0 \\ 6 x^{5} x \\ 0 \\ 15 x^{4} x^{2} \\ 0 \\ 20 x^{3} x^{3} \\ 0 \\ 15 x^{2} x^{4} \\ 0 \\ 6 x x^{5} \\ 0 \\ x^{6}\end{array}\right)\right\}$
so after 6 flips we have the situation shown below:

where the coefficients are recognized to be binomial coefficients:
Table[Binomial[6, k], \{k, 0, 6\}]
$\{1,6,15,20,15,6,1\}$
The expected winnings after the 6th flip are
(6) $\mathrm{x}^{6}+(4) 6 \mathrm{x}^{5} \mathrm{X}+(2) 15 \mathrm{x}^{4} \mathrm{x}^{2}+(0) 20 \mathrm{x}^{3} \mathrm{X}^{3}+(-2) 15 \mathrm{x}^{2} \mathrm{X}^{4}+(-4) 6 \mathrm{x} \mathrm{X}^{5}+(-6) \mathrm{X}^{6} / \mathrm{l} / \mathrm{X} \rightarrow 1-\mathrm{x} / /$ Simplify
$-6+12 x$

Evidently our expected winnings after n flips are given by
WA $\left[x_{-}, n_{-}\right]:=\operatorname{Simplify}\left[\sum_{k=0}^{n}(n-2 k) \operatorname{Binomial}[n, k] x^{n-k}(1-x)^{k}\right]$
WA [x, n]
$\mathrm{n}(-1+2 \mathrm{x})$

This result could hardly be simpler, since it can be formulated
WA $[\mathrm{x}, \mathrm{n}]=\mathrm{n}$ WA $[\mathrm{x}, \mathrm{l}]$
True
Players of the A game can expect to win/lose according as $\mathrm{x} \gtrless \frac{1}{2}$, and the amount they can expect to win is proportional to the number of flips they play. All of which is almost obvious.

- The B game

"Exceptional" steps are controlled by z. They occur at lattice sites that are 0 mod 3, and are indicated by red lines in my figures. "Normal" steps are controlled by y , and are indicted by blue lines.

The analytical theory proceeds from
$\mathbb{B}=\left(\begin{array}{lllllllllllll}0 & y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ Z & 0 & y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & Y & 0 & z & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & Y & 0 & y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Z & 0 & y & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & Y & 0 & z & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & Y & 0 & y & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & Z & 0 & y & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & Y & 0 & z & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Y & 0 & y & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Z & 0 & y & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Y & 0 & z \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Y & 0\end{array}\right) ;$
Results produced by the first 6 B-flips are shown below:

```
Table[MatrixForm[MatrixPower[\mathbb{B, n].PP], {n, 0, 6}] // TableForm}
```


$$
\begin{aligned}
& \begin{array}{c}
0 \\
0 \\
y^{2} z^{2} \\
0 \\
Z)+y z(Y z+y Z) \\
0 \\
Y Z+(Y z+y Z)^{2} \\
0 \\
Z+Y Z(Y z+y Z) \\
0 \\
Y^{2} Z^{2} \\
0 \\
0
\end{array} \\
& 0 \\
& y^{3} z^{2} \\
& 0 \\
& y^{2} Y z^{2}+y(y z(y Y+y Z)+y z(Y z+y Z)) \\
& 0 \\
& Y(y z(y Y+y Z)+y z(Y z+y Z))+z\left(y Y^{2} z+y^{2} Y Z+(Y z+y Z)^{2}\right) \\
& 0 \\
& y(Y(y Y+Y z) Z+Y Z(Y z+y Z))+Z\left(y Y^{2} Z+y^{2} Y Z+(Y z+y Z)^{2}\right) \\
& 0 \\
& y Y^{2} Z^{2}+Y(Y(y Y+Y z) Z+Y Z(Y z+y Z)) \\
& 0 \\
& Y^{3} Z^{2} \\
& 0
\end{aligned}
$$

Those results are markedly more complicated than their A-game counterparts. But they are - as I verify in the case $n=$ 6-stochastic:

```
MatrixPower \([\mathbb{B}, 6] \cdot P_{0} / .\{Y \rightarrow 1-y, Z \rightarrow 1-z\}\) MatrixPower \([\mathbb{B}, 6] . P_{0} /\).
    \(\{Y \rightarrow 1-y, Z \rightarrow 1-z\} / / S i m p l i f y\)
Total[Transpose[\%][1】] // Simplify
\(\left\{\left\{y^{4} z^{2}\right\},\{0\},\left\{-2 y^{2}\left(y^{2}+2 y(-1+z)-z\right) z^{2}\right\},\{0\}\right.\),
    \(\left\{y z\left(y^{4}+6 y^{3}(-1+z)-6 y(-1+z) z+z^{2}+2 y^{2}\left(4-9 z+4 z^{2}\right)\right)\right\}\),
    \(\{0\},\left\{y^{5}(1-2 z)+y(5-6 z) z^{2}+z^{3}+y^{4}\left(-4+15 z-10 z^{2}\right)+\right.\)
        \(\left.2 y^{2} z\left(5-12 z+6 z^{2}\right)+y^{3}\left(4-26 z+32 z^{2}-8 z^{3}\right)\right\},\{0\},\{(-1+y)\)
        \(\left.\left(y^{4}(-1+z)+3(-1+z) z^{2}+2 y^{3}\left(2-5 z+3 z^{2}\right)-2 y z\left(4-9 z+5 z^{2}\right)+4 y^{2}\left(-1+5 z-6 z^{2}+2 z^{3}\right)\right)\right\}\),
    \(\left.\{0\},\left\{-2(-1+y)^{2}\left(y^{2}+2 y(-1+z)-z\right)(-1+z)^{2}\right\},\{0\},\left\{(-1+y)^{4}(-1+z)^{2}\right\}\right\}\)
```

1

To compute the score (expected winnings) in that case I introduce some notation:

Length [Q]

13
$W Q=(6) Q \llbracket 1 \rrbracket+(4) Q \llbracket 3 \rrbracket+(2) Q \llbracket 5 \rrbracket+(0) Q \llbracket 7 \rrbracket-2 Q \llbracket 9 \rrbracket-4 Q \llbracket 11 \rrbracket-6 Q \llbracket 13 \rrbracket$

$$
-6(1-y)^{4}(1-z)^{2}+6 y^{4} z^{2}-8(1-y)^{2}(1-z)((1-y) y(1-z)+(1-z)(y(1-z)+(1-y) z))+
$$

$$
8 y^{2} z((1-y) y z+z(y(1-z)+(1-y) z))-
$$

$$
2\left(\left((1-y)((1-y) y+y(1-z))+(1-y)^{2} z\right)((1-y) y(1-z)+(1-z)(y(1-z)+(1-y) z))+\right.
$$

$$
\left.2(1-y)^{2}(1-z)((1-y) y z+z(y(1-z)+(1-y) z))\right)+
$$

$$
2\left(2 y^{2} z((1-y) y(1-z)+(1-z)(y(1-z)+(1-y) z))+\right.
$$

$$
\left.\left(y^{2}(1-z)+y((1-y) y+(1-y) z)\right)((1-y) y z+z(y(1-z)+(1-y) z))\right)
$$

WQ // Simplify
$2\left(-3+y^{5}+y^{3}(4-6 z)+2 z+2 z^{2}-z^{3}+y^{4}(-4+3 z)+y^{2}\left(-2+4 z+6 z^{2}-4 z^{3}\right)+y\left(4-7 z^{2}+4 z^{3}\right)\right)$
Looking to the following figure

$$
\begin{aligned}
& \mathrm{Q}=\operatorname{Transpose}\left[\text { MatrixPower }[\mathbb{B}, 6] . \mathrm{P}_{0} / \cdot\{\mathrm{Y} \rightarrow 1-\mathrm{y}, \mathrm{Z} \rightarrow 1-\mathrm{z}\}\right] \llbracket 1 \rrbracket \\
& \left\{y^{4} z^{2}, 0,2 y^{2} z((1-y) y z+z(y(1-z)+(1-y) z)), 0,\right. \\
& 2 y^{2} z((1-y) y(1-z)+(1-z)(y(1-z)+(1-y) z))+\left(y^{2}(1-z)+y((1-y) y+(1-y) z)\right) \\
& ((1-y) y z+z(y(1-z)+(1-y) z)), 0,2(1-y)^{2} y^{2}(1-z) z+ \\
& (y((1-y) y+y(1-z))+(1-y) y z)((1-y) y(1-z)+(1-z)(y(1-z)+(1-y) z))+ \\
& ((1-y) y(1-z)+(1-y)((1-y) y+(1-y) z))((1-y) y z+z(y(1-z)+(1-y) z)), 0, \\
& \left((1-y)((1-y) y+y(1-z))+(1-y)^{2} z\right)((1-y) y(1-z)+(1-z)(y(1-z)+(1-y) z))+ \\
& 2(1-y)^{2}(1-z)((1-y) y z+z(y(1-z)+(1-y) z)), 0, \\
& \left.2(1-y)^{2}(1-z)((1-y) y(1-z)+(1-z)(y(1-z)+(1-y) z)), 0,(1-y)^{4}(1-z)^{2}\right\}
\end{aligned}
$$

Score6 = ContourPlot[WQ, \{y, 0, 1\}, $\{z, 0,1\}]$;
BreakEven = ContourPlot $[W Q=0,\{y, 0,1\},\{z, 0,1\}]$;
Win = ContourPlot $[W Q=.2,\{y, 0,1\},\{z, 0,1\}]$;
$\operatorname{ReferenceLine}=\operatorname{Graphics}[\operatorname{Line}[\{\{0,1\},\{1,0\}\}]$;
Show[\{Score6, BreakEven, Win, ReferenceLine\}]

we see that the B-game is a winning game when $\{y, z\}$ sits above the curved diagonal. I introduced a straight diagonal to expose asymmetry (if any) of the curved diagonal: if present at all it is very slight.
At $y=z$ the B-game becomes a copy of the A-game; all complications evaporate, and we recover
WQ /. z \rightarrow y // Simplify
$-6+12 y$

- The ABABAB game

Parrondo's version of the game is played AABBAABBAABB, but I found in Part 3 that the Paradox is conspicuous also in the simpler ABABAB game, which is the version discussed below. I preceed in the assumption (which should make no difference in the long term?) that the A-player makes the first move. The game tree then assumes the following form

For the 6-move game ABABAB we have
$\mathbb{C}=\mathbb{B} \cdot \mathbb{A} ;$
$R=\operatorname{Transpose}\left[M a t r i x P o w e r[\mathbb{C}, 3] . P_{0} / \cdot\{X \rightarrow 1-x, Y \rightarrow 1-y, Z \rightarrow 1-z\}\right] \llbracket 1 \rrbracket$
$\left\{x^{3} y^{2} z, 0, x(x y(x(1-y)+(1-x) y)+x y((1-x) y+x(1-z))) z+x^{2} y z(x(1-y)+(1-x) z)\right.$, $0, x y\left(2(1-x) x(1-y) y+(x(1-y)+(1-x) y)^{2}\right)+$
$(x y(x(1-y)+(1-x) y)+x y((1-x) y+x(1-z)))((1-x) y+x(1-z))+(1-x) x^{2} y(1-z) z$, $0,(x(1-y)+(1-x) y)\left(2(1-x) x(1-y) y+(x(1-y)+(1-x) y)^{2}\right)+$

$$
(1-x)(1-y)(x y(x(1-y)+(1-x) y)+x y((1-x) y+x(1-z)))+
$$

$$
x y((1-x)(1-y)(x(1-y)+(1-x) y)+(1-x)(1-y)(x(1-y)+(1-x) z)), 0
$$

$$
(1-x)(1-y)\left(2(1-x) x(1-y) y+(x(1-y)+(1-x) y)^{2}\right)+(1-x)^{2} x(1-y)(1-z) z+
$$

$$
(x(1-y)+(1-x) z)((1-x)(1-y)(x(1-y)+(1-x) y)+(1-x)(1-y)(x(1-y)+(1-x) z))
$$ $0,(1-x)^{2}(1-y)((1-x) y+x(1-z))(1-z)+$

$(1-x)(1-z)((1-x)(1-y)(x(1-y)+(1-x) y)+(1-x)(1-y)(x(1-y)+(1-x) z))$, $\left.0,(1-x)^{3}(1-y)^{2}(1-z)\right\}$
$\mathrm{WR}=(6) \mathrm{R} \llbracket 1 \rrbracket+(4) \mathrm{R} \llbracket 3 \rrbracket+(2) \mathrm{R} \llbracket 5 \rrbracket+(0) \mathrm{R} \llbracket 7 \rrbracket-2 \mathrm{R} \llbracket 9 \rrbracket-4 \mathrm{R} \llbracket 11 \rrbracket-6 \mathrm{R} \llbracket 13 \rrbracket$
$-6(1-x)^{3}(1-y)^{2}(1-z)+6 x^{3} y^{2} z+$
$2\left(x y\left(2(1-x) x(1-y) y+(x(1-y)+(1-x) y)^{2}\right)+(x y(x(1-y)+(1-x) y)+\right.$
$\left.x y((1-x) y+x(1-z)))((1-x) y+x(1-z))+(1-x) x^{2} y(1-z) z\right)+$
$4\left(x(x y(x(1-y)+(1-x) y)+x y((1-x) y+x(1-z))) z+x^{2} y z(x(1-y)+(1-x) z)\right)-$
$4\left((1-x)^{2}(1-y)((1-x) y+x(1-z))(1-z)+\right.$
$(1-x)(1-z)((1-x)(1-y)(x(1-y)+(1-x) y)+(1-x)(1-y)(x(1-y)+(1-x) z))-$
$2\left((1-x)(1-y)\left(2(1-x) x(1-y) y+(x(1-y)+(1-x) y)^{2}\right)+(1-x)^{2} x(1-y)(1-z) z+\right.$
$(x(1-y)+(1-x) z)((1-x)(1-y)(x(1-y)+(1-x) y)+(1-x)(1-y)(x(1-y)+(1-x) z)))$

WR / / Simplify

```
\(2\left((-1+y)\left(3+y+y^{2}-z-z^{2}\right)+x^{3}\left(4 y^{2}+(3-2 z) z-y(3+2 z)\right)+\right.\)
    \(x^{2}\left(5 y^{3}+5(-1+z) z-y^{2}(13+z)+y\left(5+8 z-4 z^{2}\right)\right)+\)
    \(\left.x\left(3-5 y^{3}+z-4 z^{2}+y^{2}(6+z)+y\left(-1-2 z+4 z^{2}\right)\right)\right)\)
```

The following figure shows the breakeven surface for the 6 -more $A B A B A B$ game. The winning region is identified by the blue sphere, the losing region by the red sphere. A yellow sphere marks the center of the parameter space.

```
ABBreakEven6 = ContourPlot3D[WR == 0, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}];
ABGauge = Graphics3D[{
    Line[{{0, 0, 0}, {1, 1, 1}}],
    {Red, Sphere[{0.25, 0.25, 0. 25}, 0.02]},
    {Yellow, Sphere[{0.50, 0.50, 0.50}, 0.02]},
    {Blue, Sphere[{0.75, 0.75, 0.75}, 0.02]}
    }];
Show [ {ABBreakEven6, ABGauge}]
```


- Demonstration of the emergence of Parrondo's Paradox

BBreakEven6 = ContourPlot3D[WQ ==0,\{x,0,1\},\{y,0,1\},\{z,0,1\}]]

Show [\{ABBreakEven6, BBreakEven6, ABGauge \}]

The A-game loses if $x<\frac{1}{2}$. So I construct the fractions of those null surfaces that lie in that semicube. I place a red sphere at the origin (to mark the sector in which A, B and $A B$ all lose) and a black sphere at a point which was seen in preliminary versions of the figure to comprise a plausible Parrondo point:

```
SemiABBreakEven6 = ContourPlot3D[WR == 0, {x, 0, 0.5}, {y, 0, 1}, {z, 0, 1}];
SemiBBreakEven6 = ContourPlot3D[WQ == 0, {x, 0, 0.5}, {y, 0, 1}, {z, 0, 1}];
MarksOrigin = Graphics3D[{Red, Sphere[{0, 0, 0}, 0.02]}];
ParrondoPoint = Graphics3D[{Black, Sphere[{0.45, 0.8, 0.05}, 0.02]}];
Show[{SemiABBreakEven6, SemiBBreakEven6, MarksOrigin, ParrondoPoint},
    AspectRatio }->\mathrm{ Automatic]
```


Though the game has been short (only three repetitions of AB) it has exposed already Parrondo's paradoxical result: at $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}=\{0.45,0.80 .0 .05\}$ the A-game and B-game lose, but when played in AB alternation they win:

WA [x, 6] /. $x \rightarrow 0.45$
WQ /. $\{x \rightarrow 0.45, y \rightarrow 0.8, z \rightarrow 0.05\}$
WR /. $\{x \rightarrow 0.45, y \rightarrow 0.8, z \rightarrow 0.05\}$
-0.6
-0.41265
0.722419

The "Parrondo points" are seen to live in a little tent-like sector of the parameter space.
To play longer games we would have to construct larger \mathbb{A} and \mathbb{B} matrices. For example, to play 10 AB sequences we - since the possible scores in such games range on $[-20,+20]$ - would have to construct 41 -dimensional matrices. It would become advantageous at that point to bring into play Mathematica's sparse matrix resources

```
s = SparseArray[{{1, 1} }->1,{2,2}->2,{3,3}->3,{1, 3} -> 4}
MatrixForm[s]
SparseArray[<4>, {3, 3}]
( l
and to employ programing techniques of which I have no command.
```

